Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE

In Physics (4PH1) Paper 1P and
Sciences (Double Award) (4SD0) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number P67160RA
Publications Code 4PH1_1P_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer			Notes		Marks
1 (a)	one mark for each correct row;;;;					4
	Type of motion	Graph				
		P	Q	R	S	
	constant acceleration			\checkmark		
	increasing acceleration				\checkmark	
	moving at constant velocity	\checkmark				
	stationary		\checkmark			
	reject mark for row if more than one tick seen					
(b)	area (under the line) / eq;					1

Total for Question 1 = 5 marks

Question number	Answer	Notes	Marks
2 (a)	the rate of flow of charge/electrons;	allow amount of charge per second, amount of charge per unit time	1
(b)	electron(s);	ignore words written in addition to electron(s)	1
(c) (i) (ii) (iii)	power $=$ current \times voltage; substitution; rearrangement; evaluation; e.g. $1400=$ current $\times 230$ (current =) $1400 / 230$ (current =) $6.1(\mathrm{~A})$ any two from: MP1. idea that wire has resistance; MP2. electrons collide with lattice ions; MP3. idea of transferring energy (from electrons to wire/eq); MP4. increasing vibrations of lattice ions;	allow standard symbols and rearrangements e.g. I = P / V -1 for POT error allow 6, 6.09, 6.086... ignore friction allow sensible alternatives for lattice ions e.g. atoms in the wire etc. ignore generic references to "heat" allow sensible alternatives for lattice ions e.g. atoms in the wire etc.	1 3 2

Total for Question 2 = 8 marks

Question number	Answer	Notes	Marks
3 (a)	magnet moves through / near coil of wire; field lines of magnet are cut by coil; idea that voltage is induced across the coil;	allow idea that magnet enters / leaves coil ignore references to the coil having its own field ignore references to current	3
(b)	any two from: MP1. shaking torch harder / faster; MP2. increasing the number of turns on the coil; MP3. using a less resistive metal for the coil of wire;	allow moving coil/magnet faster "larger coil"	2

Total for Question $3=5$ marks

Question number	Answer	Notes	Marks
4 (a) (b) (i) (ii) (iii) (iv)	```becquerel(s) / Bq; vertical axis labelled "activity" AND horizontal axis labelled "time in years"; smooth curve of best fit drawn; evidence of working on graph or in working space; half-life = 5.6 (years); 3 half-lives; (3 < 5.6 =) 16.8 (years);```	allow recognisable spellings allow if written in table ignore unit on vertical axis curve should pass within 1 small square of each data point condone curve starting at second point e.g. lines shown on graph or evidence of halving 8000 etc. allow range of 5.4-5.8 allow 16.2-17.4 (years) allow ecf from (iii)	1 1 1 2 2
(c)	both have same number of protons; cobalt-60 has one more neutron;	allow RA ignore references to atomic/mass numbers	2
(d)	nucleus loses a neutron; nucleus gains a proton;	"neutron becomes a proton" scores both marks condone plurals e.g. neutrons, protons	2
(e)	any four from: Hazards (max. 2 marks) MP1. radiation from them can cause cancer / cell damage / damage to organisms / people; MP2. radiation is highly penetrating; MP3. risk of theft / eq; MP4. remain radioactive for some time; MP5. risk of contamination of land/water; Precautions (max. 2 marks) MP6. need for shielding; MP7. use of machines to remove from reactor; MP8. need for security (to prevent public access/protect from hijacking/eq); MP9. need to be suitably protected against damage; MP10. special facilities required, not landfill; MP11. relatively short half-life means that very long-term storage is not necessary;	e.g. lead, concrete etc. e.g. from earthquakes, overheating etc. e.g. stored underground/underwater, measures to avoid leakage	4

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 5 (a) \& \begin{tabular}{l}
A (accuracy of the measurement); \\
\(B\) is incorrect because removing a zero error does not made to more decimal places C is incorrect because removing a zero error does not assessed \\
D is incorrect because removing a zero error does not other variables that may affect the measurement of \(m\)
\end{tabular} \& allow the measurement to be allow the repeatability to be hing to improve the control of mass \& 1 \\
\hline (b) \& \begin{tabular}{l}
C (reliability of the measurement); \\
A is incorrect because repeating a measurement does closer to the true value \\
\(B\) is incorrect because repeating a measurement does be made to more decimal places \\
D is incorrect because repeating a measurement does control of other variables that may affect the measur
\end{tabular} \& not make the measurement not allow the measurement to nothing to improve the ement of mass \& 1 \\
\hline \begin{tabular}{l}
(c) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
19.34 reading circled; \\
anomalous reading excluded from calculation; mean mass evaluated; \\
final answer expressed to 2 decimal places; \\
e.g. \\
\((\) mean \(=)[18.96+19.01+19.05+18.98+19.04] \div 5\) \\
\((\) mean \(=) 19.008\) \\
(mean mass =) 19.01 (g) \\
volume;
\end{tabular} \& \begin{tabular}{l}
allow ecf from (i) allow ecf if anomalous reading included allow ecf if anomalous reading included \\
if anomalous reading included, allow final 2 marking points only 19.06 = 2 marks 19.063... = 1 mark
\end{tabular} \& 1
3

1

\hline
\end{tabular}

Total for Question 5 = 7 marks

Question number	Answer	Notes	Marks
6 (a)	any two from: MP1. ruler; MP2. protractor; MP3. named suitable light source; MP4. optical pin(s);	e.g. ray box, light box, laser ignore torch	2
(b) (i) (ii) (iii) (iv) (v)	```ray drawn bending in the correct direction; ray drawn parallel to ray before it enters the block; normal drawn perpendicular to block's surface where light ray enters; angle of incidence \(=44\) (degrees); angle of refraction = 26 (degrees); refractive index \(=\frac{\sin (\text { angle of incidence) }}{\sin \text { (angle of refraction) }} ;\) substitution; evaluation; e.g. \((\mathrm{n}=) \sin 44 / \sin 26\) (\(\mathrm{n}=\) =) 1.6```	judge by eye judge by eye normal must be drawn in both air and block allow 43-45 allow 25-27 allow standard symbols and rearrangements e.g. $n=\sin (i) \div \sin (r)$ allow ecf from (iii) allow range 1.5-1.7	2 1 2 1 2
(c)	idea that multiple angles (of incidence) measured; graph of $\sin (i)$ against $\sin (r)$ plotted; gradient of graph = refractive index;	can be gained from diagram ignore orientation of axes can be gained from diagram reject if inconsistent with graph. However, accept if $\sin (r)$ on y-axis then gradient $=1 / n$	3

Total for Question 6 = 13 marks

Question number	Answer	Notes	Marks
7	any five from: MP1. current in coil produces magnetic field; MP2. direction of this magnetic field is (continuously) changing; allow coil is magnetised / becomes an electromagnet MP3. field of coil interacts with field of magnet; MP4. producing a force on coil/wire; MP5. direction of the force changes; MP6. cone/coil/wire vibrates; MP7. air particles (next to the cone) are made to vibrate;	allow cone moves in and out / backwards and forwards	

Total for Question $7=5$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 8 (a) \& Callisto drawn with a circular orbit around Jupiter; Jupiter positioned at the centre of the orbit; \& judge circular shape by eye \& 2 \\
\hline (b) \& ```
conversion of time from hours to seconds;
substitution into orbital speed formula;
evaluation;
final answer given to 3s.f.;
e.g.
time = (400 < 60 < 60 =) 1440000 (s)
(orbital speed =) 2 }2\pi\times1880000/144000
(orbital speed =) 8.203... (km/s)
(orbital speed =) 8.20(km/s)
``` \& \begin{tabular}{l}
allow use of 1440000 seen anywhere allow ecf from incorrect time conversion \\
mark independently
\end{tabular} \& 4 \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii)
\end{tabular} \& ```
any one from:
MP1. Callisto has a larger radius;
MP2. Callisto has a lower density;
MP3. Callisto has a smaller core;
use of weight = mass \(\times g\);
setting up ratio OR evaluation of mass of object;
evaluation of weight on Callisto;
e.g.
\(W=m \times g\)
\(W_{c} / g_{c}=W_{m} / g_{m}\) OR \(m=37(\mathrm{~kg})\)
( \(\mathrm{W}_{\mathrm{c}}=\) ) \(44(\mathrm{~N})\)
``` \& \begin{tabular}{l}
allow RA allow Callisto is larger ignore references to orbital radius/distance from Sun \\
seen anywhere in working \\
answer of 78-79 gets 2 marks \\
allow 44.3, 44.25
\end{tabular} \& 1

3

\hline
\end{tabular}

Total for Question $8=10$ marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 9 (a)
 (i)
 (ii)
 (iii) | pressure = force / area;
 substitution;
 rearrangement;
 evaluation;
 e.g.
 $1.03 \times 10^{6}=$ force $/ 1.13$
 (force $=$) $1.03 \times 10^{6} \times 1.13$
 $($ force $=) 1.16 \times 10^{6}(\mathrm{~N})$
 any two from:
 MP1. idea that gas particles move randomly;
 MP2. idea that gas particles collide with all walls of container;
 MP3. idea that force per unit area is the same on all sides of cylinder; | allow standard symbols and rearrangements e.g. $p=F / A$
 -1 for POT error
 allow $1.2 \times 10^{6}, 1163900$ etc.
 allow move in all directions | 1
 3
 2 |
| (b) (i)
 (ii)
 (iii) | idea of extrapolating line backwards; absolute zero is the temperature when the pressure is zero; $-273\left({ }^{\circ} \mathrm{C}\right) ;$
 straight line with positive gradient drawn; line passes through the origin; | allow if seen on graph allow temperature when line cuts x-axis/temperature axis (may be indicated on graph)
 allow -273.15
 judge by eye | 2
 1
 2 |

Total for Question $9=11$ marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 10 (a) | determine stretched/original length;
 with a ruler / tape measure;
 extension = stretched length - original length/12(cm); | set unstretched length to zero (on) ruler
 reading on ruler is extension | 3 |
| (b) (i)
 (ii) | line is not straight / line is curved; (therefore) weight/force and extension are not proportional to each other;
 evidence of using a reasonable method of estimating an area;
 evaluation of the area of one shape;
 correct evaluation of area without factoring cm to m;
 correct final evaluation;
 e.g.
 counting squares approach used
 1 medium square $=(1.25 \times 2.5=) 3.125$
 total area $=29$ squares $\times 3.125=91$
 increase in energy $=(91 / 100=) 0.91(\mathrm{~J})$ | allow gradient is not constant
 e.g. counting squares, splitting into rectangles, approximating to a triangle etc.
 medium square $=0.03125(\mathrm{~J})$ large square $=0.125(\mathrm{~J})$ allow 85-100
 allow 0.85-1.00 (J) | 2 4 |

Total for Question 10 = 9 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
11 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& ```
12 (V);
voltage = current }\times\mathrm{ resistance;
substitution;
rearrangement;
evaluation;
e.g.
12=0.019 }\times
(R =) 12 / 0.019
(R =) 630(\Omega)
``` \& \begin{tabular}{l}
allow standard symbols and rearrangements e.g. \(\mathrm{R}=\mathrm{V} / \mathrm{l}\) \\
allow ecf from (i) \\
-1 for POT error 0.631... scores 2 marks if 35 mA used as the current (giving 342.8...) then award 2 marks max. \\
allow 632, 631.6, 631.57...
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
1
\[
3
\]
\end{tabular} \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(c)
\end{tabular} \& \begin{tabular}{l}
```
idea that current is conserved at a junction in a
circuit;
use of voltage = current }\times\mathrm{ resistance;
calculation of total resistance of path (750\Omega);
idea that resistances of two resistors in series adds
up to total resistance;
evaluation of resistance of Y;
e.g.
12=0.016 < RT
R
750=250 + RY
RY = 500 (\Omega)
``` \\
current decreases; \\
with any one from: \\
- (total) resistance of circuit has increased; \\
- idea that there are now less paths for the current in the circuit;
\end{tabular} \& \begin{tabular}{l}
e.g. current before and after junction must be the same, \(16+19=35\) etc. \\
ignore "current is shared" \\
must be more than just quoting the formula for the mark calculation of voltage across \(250 \Omega\) resistor (4.0 V) evaluation of voltage across \(R\) (8.0V) evaluation of resistance of \(R\) (using \(\mathrm{V}=\mathrm{IR}\) ) \\
if mA not converted to \(A\) and 0.75 seen then award 2 marks max. \\
DOP
\end{tabular} \& 1
4
4

2 <br>
\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 12 (a) | D (by radiation); <br> A is incorrect because conduction cannot take place through the vacuum of space $B$ is incorrect because convection cannot take place through the vacuum of space C is incorrect because evaporation cannot take place through the vacuum of space |  | 1 |
| (b) | air (inside external pipe) is heated; air expands; <br> air decreases in density (and therefore rises); | allow particles move further apart reject particles become less dense | 3 |
| (c) | idea that air entering tube is hotter than the ground; energy is transferred from air (to ground/surroundings); by conduction; | allow RA e.g. ground is cooler than air | 3 |
| (d) | black / other dark colour; (because) dark colours are better/good absorbers of radiation; <br> air inside pipe becomes hotter / convection increases; | allow infrared / IR for radiation ignore heat | 3 |

Total for Question $12=10$ marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

